Skip to main content
OpenConf small logo

Providing all your submission and review needs
Abstract and paper submission, peer-review, discussion, shepherding, program, proceedings, and much more

Worldwide & Multilingual
OpenConf has powered thousands of events and journals in over 100 countries and more than a dozen languages.

Adaptive Wine Recommendation In Online Environments

Deep learning and large language models (LLMs) have recently enabled studies in state-of-the-art technologies that enhance recommender systems. This research focuses on solving the next-item recommendation problem using these challenging technologies in Web applications, specifically focusing on a case study in the wine domain. This paper presents the characterization of the framework developed for the object of study: adaptive recommendation based on new modeling of the initial data to explore the user's dynamic taste profile. Following the design science research methodology, the following contributions are presented: (i) a novel dataset of wines called X-Wines; (ii) an updated recommender model called X-Model4Rec – eXtensible Model for Recommendation supported in attention and transformer mechanisms which constitute the core of the LLMs; and (iii) a collaborative Web platform to support adaptive wine recommendation to users in an online environment. The results indicate that the solutions proposed in this research can improve recommendations in online environments and promote further scientific work on specific topics.

Rogério Xavier de Azambuja
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)
Brazil

A. Jorge Morais
Universidade Aberta (UAb)
Portugal

Vítor Filipe
Universidade de Trás-os-Montes e Alto Douro (UTAD)
Portugal